Балаковский инженерно-технологический институт — филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Факультет атомной энергетики и технологий Кафедра «Атомная энергетика»

РАБОЧАЯ ПРОГРАММА

по дисциплине «Гидродинамика и теплообмен»

Специальность

«14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг»

Основная профессиональная образовательная программа «Системы контроля и управления атомных станций»

Квалификация выпускника Инженер-физик

Форма обучения Очная

Цель освоения дисциплины

Освоение студентами законов переноса теплоты и массы, методов теории тепломассообмена, сведений о современном состоянии научных исследований в данной области и наиболее актуальных для практики нерешенных проблемах; привитие студентам практических навыков решения типичных задач, привитие студентам практических навыков исследования процессов тепломассообмена. Процессы тепломассообмена охватывают все сферы человеческой деятельности, поэтому в задачи курса входит ознакомление студентов с наиболее типичными задачами тепломассообмена в различных отраслях техники в том числе и при проектировании АЭС.

Соответствие профстандартам. «24.078. Специалист - исследователь в области ядерноэнергетических технологий»

Место дисциплины в структуре ООП ВО

Дисциплина «Гидродинамика и теплообмен» является основой для подготовки выпускников кафедры к выполнению заданий в процессе учебных видов практик, а также к выполнению профессиональной деятельности в качестве специалиста после окончания университета.

Дисциплина базируется на следующих дисциплинах: математику, физику, теоретическую механику.

Знания, полученные по освоению дисциплины, необходимы при выполнении дипломной выпускной работы и для изучения дисциплин: «Парогенераторы», «Ядерные энергетические реакторы», а также программы аспирантской подготовки по направлению «Атомные станции: проектирование, эксплуатация и инжиниринг», «Теплоэнергетика и теплотехника», а также при прохождении производственных практик и государственной итоговой аттестации.

Трудовые функции в соответствии с профессиональным стандартом, которым соответствует выпускник: «24.078. Специалист - исследователь в области ядерно- энергетических технологий» В/02.7. Обобщение результатов, проводимых научно-исследовательских и опытно-конструкторских работ с целью выработка предложений по разработке новых и усовершенствованию действующих ядерно-энергетических технологий.

Компетенции обучающегося, формируемые в результате освоения дисциплины В процессе освоения данной дисциплины у студента формируются следующие компетен-

общепрофессиональные

ции:

оощепрофес	Сиональныс	
Код ком-	Наименование ком-	Индикаторы достижения компетенции
петенции	петенции	тидикаторы достижения компетенции
ОПК-1	Способен использо-	3-ОПК-1: базовые законы естественнонаучных дисциплин;
	вать базовые знания	основные математические законы; основные физические
	естественнонаучных	явления, процессы, законы и границы их применимости;
	дисциплин в про-	сущность основных химических законов и явлений; мето-
	фессиональной дея-	ды математического моделирования, теоретического и
	тельности, приме-	экспериментального исследования
	нять методы матема-	У-ОПК-1:выявлять естественнонаучную сущность про-
	тического анализа и	блем, возникающих в ходе профессиональной деятельно-
	моделирования, тео-	сти, привлекать для их решения соответствующий физико-
	ретического и экспе-	математический аппарат
	риментального ис-	В- ОПК-1: математическим аппаратом для разработки мо-
	следования	делей процессов и явлений, решения практических задач
		профессиональной деятельности; навыками использования
		основных общефизических законов и принципов

профессиональные

Задачи профессиональной деятельности (ЗПД)	Объект или об- ласть знания	Код и наимено- вание компетен- ции	Индикаторы достижения ком- петенции	
Математическое моде-	Ядерные, хими-	ПК-2 Способен	3-ПК-2 знать методы матема-	
лирование процессов и	ческие и тепло-	проводить мате-	тического анализа для моде-	
объектов на базе стан-	вые процессы,	матическое мо-	лирования процессов в ядер-	

<u></u>			
дартных пакетов авто-	протекающие в	делирование для	но-энергетическом и тепло-
матизированного	ядерных энерге-	анализа всей со-	механическом оборудовании
Проектирования и ис-	тических уста-	вокупности про-	АЭС
следований; подготов-	новках и на	цессов в ядерно-	У-ПК-2 уметь проводить ма-
ка данных для состав-	атомных станци-	энергетическом	тематическое моделирование
ления обзоров,	ях.	и тепломехани-	процессов в ядерно-
отчетов и научных		ческом оборудо-	энергетическом и тепломеха-
публикаций.		вании АЭС	ническом оборудовании
			АЭС,
			В-ПК-2 владеть стандартны-
			ми пакетами автоматизиро-
			ванного проектирования и ис-
			следований

универсальные

УКЕ - 1	Способен использо-	3-УКЕ-1 знать: основные законы естественнонаучных
	вать знания есте-	дисциплин, методы математического анализа и моделиро-
	ственнонаучных	вания, теоретического и экспериментального исследова-
	дисциплин, приме-	ния
	нять методы матема-	У-УКЕ-1 уметь: использовать математические методы в
	тического анализа и	технических приложениях, рассчитывать основные число-
	моделирования, тео-	вые характеристики случайных величин, решать основные
	ретического и экспе-	задачи математической статистики; решать типовые рас-
	риментального ис-	четные задачи
	следования в по-	В-УКЕ-1 владеть: методами математического анализа и
	ставленных задачах	моделирования; методами решения задач анализа и расче-
		та характеристик физических систем, основными приема-
		ми обработки экспериментальных данных, методами ра-
		боты с прикладными программными продуктами

Задачи воспитания, реализуемые в рамках освоения дисциплины

Направле-	Создание условий,	Использование воспита-	Вовлечение в разнопла-
ние/цели	обеспечивающих	тельного потенциала учеб-	новую внеучебную дея-
		ных дисциплин	тельность
Профессио-	формирование	Использование воспитатель-	1.Организация научно-
нальное и	культуры исследо-	ного потенциала дисциплин	практических конференций
трудовое	вательской и инже-	профессионального модуля	и встреч с ведущими спе-
воспитание	нерной деятельно-	для формирования инженер-	циалистами предприятий
	сти (В16)	ного мышления и инженерной	города и ветеранами атом-
		культуры за счёт практиче-	ной отрасли.
		ских студенческих исследова-	2. Организация и проведе-
		ний современных производ-	ние предметных олимпиад
		ственных систем; проектной	и участие в конкурсах про-
		деятельности студентов по	фессионального мастер-
		разработке и оптимизации	ства.
		технологических систем, свя-	3. Участие в ежегодных ак-
		занной с решением реальных	циях студенческих строи-
		производственных задач; про-	тельных отрядов
		хождения через разнообраз-	
		ные игровые, творческие, фе-	
		стивальные формы, требую-	
		щие анализа сложного объек-	
		та, постановки относительно	
		него преобразовательных за-	
		дач для их оптимального ре-	
		шения.	

Структура и содержание учебной дисциплины

Дисциплина преподается студентам в 6-ом семестре. Общая трудоемкость дисциплины составляет 3 зачетных единицы, 108 ак. часа.

Календарный план

№ P			Виды учебной дея- тельности (в часах)					Макси	
а 3 Д е л	№ Т е м ы	Наименование раздела (темы) дисциплины	Всего	Лекции	Лабораторные	Практические	CPC	Аттеста ция раз- дела (форма)	маль- ный балл за раздел
	1.1	Введение. Физические свойства жидкостей	13	2	2	2	7		6
1	1.2	Режимы движения	13	2	2	2	7	УО1	6
	1.3	Гидродинамика газа.	13	2	2	2	7		6
	1.4	Теплоносители АЭС.	13	2	2	2	7		6
	2.1	Теплопроводность.	14	2	2	2	8		6
	2.2	Конвективный теплообмен.	14	2	2	2	8		6
2	2.3	Критериальные уравнения	14	2	2	2	8	УО2	7
	2.4	Теплопередача. Теплообменное оборудование	14	2	2	2	8		7
Вид	пром	ежуточной аттестации	108/ 16	16	16	16/16	60	Экзамен	50

^{* -} сокращенное наименование формы контроля

** - сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен Сокращенное наименование форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
УО	Устный опрос
Э	Экзамен

Содержание лекционного курса

	Темы лекции. Вопросы, отрабатываемые на лекции	Всего часов	Учебно- методическое обеспечение
	1	2	3
Лен	кция 1. Тема лекции.Введение.		
1.	Цели и задачи дисциплины		
2.	Физические свойства жидкостей		
3.	Основное уравнение гидростатики	2	[1-15]
4.	Приборы для измерения давления		
5.	Эпюры давления жидкости		
6.	Законы Архимеда и Паскаля		
Лен	кция 2. Тема лекции. Режимы движения		
1.	Течение жидкостей и газов		
2.	Разность напоров и потери напора		
3.	Напорная и пьезометрическая линии	2	[1-15]
4.	Связь давления и скорости в потоке		
5.	Расчёт напорных потоков		
6.	Гидравлика отверстий и насадков		

Леі	кция 3. Тема лекции. Гидродинамика газа.		
1.	Физические свойства газов		
2.	Статическое давление		
3.	Эпюры давления	2	[1-15]
4.	Приведённое статическое давление		
5.	Уравнение неразрывности потока		
6.	Разность давлений и потери давления		
Ле	кция 4. Тема лекции. Теплоносители АЭС.		
1.	Теплоносители атомных энергетических установок		
2.	Теплоносители на основе воды	2	[1-15]
3.	Особенности применения жидкометаллических теплоносителей		
4.	Примеры и параметры жидкометаллических теплоносителей		
	кция 5. Тема лекции. Теплопроводность.		
1.	Температурное поле		
2.	Температурный градиент	2	[1-15]
3.	Тепловой поток. Закон Фурье	2	[1-13]
4.	Коэффициент теплопроводности		
5.	Дифференциальные уравнения теплопроводности		
	кция 6. Тема лекции. Конвективный теплообмен.		
1.	Основные понятия и определения		
2.	Теория размерностей	2	[1-15]
3.	Теория подобия		
4.	Некоторые случаи теплообмена		
	кция 7. Тема лекции. Критериальные уравнения		
1.	Критериальные уравнения – применение		
2.	Расчетные зависимости конвективного теплообмена		
3.	Теплообмен при естественной конвекции	2	[1-15]
4.	Теплоотдача при вынужденном движении жидкости		
B T]	рубах и каналах.		
5.	Теплоотдача при поперечном обтекании труб		
	кция 8. Тема лекции. Теплопередача.		
1.	Теплопередача через плоскую стенку		
2.	Теплопередача через цилиндрическую стенку	2	[1-15]
3.	Типы теплообменных аппаратов		
4.	Расчет теплообменных аппаратов		
5.	Теплообменное оборудование. Назначение.		

Перечень практических занятий

Тема практического занятия. Вопросы, отрабатываемые на практическом занятии	Всего часов	Учебно- методическое обеспечение
1	2	3
Типы теплообменников.	4	[9]
Парогенераторы АЭС. Часть 1.	4	[10]
Парогенераторы АЭС. Часть 2.	4	[11]
Расчета котла-утилизатора.	4	[12]

Перечень лабораторных работ

Тема лабораторных занятия. Вопросы, отрабатываемые на лабораторных занятии	Всего часов	Учебно- методическое обеспечение
1	2	3
Исследование теплоотдачи при пузырьковом кипении жидкости	4	[13]
Определение коэффициента теплоотдачи при свободной конвекции воздуха около горизонтальной трубы.	4	[14]
Исследование теплопроводности твердых тел методом плоского бикалориметра.	4	[14]
Исследование теплопередачи в теплообменнике типа "труба в трубе".	4	[15]

Задания для самостоятельной работы студентов

Вопросы для самостоятельного изучения (задания)	Всего	Учебно- методическое обеспечение
1	2	3
Физические свойства различных жидкостей.	6	[1-15]
Режимы движения различных сред.	6	[1-15]
Гидродинамика газа. Основы расчета.	6	[1-15]
Теплоносители АЭС. Основания применения.	6	[1-15]
Теплопроводность. Основы расчета.	6	[1-15]
Конвективный теплообмен. Основы расчета.	9	[1-15]
Критериальные уравнения. Пример расчета.	9	[1-15]
Теплопередача. Алгоритм и примеры расчета.	6	[1-15]
Теплообменное оборудование. Типы. Параметры.	6	[1-15]

Расчетно-графическая работа не предусмотрена учебным планом

Курсовая работа не предусмотрена учебным планом

Образовательные технологии

Реализация освоения данной дисциплины обеспечивается доступом каждого обучающегося к базам данных и библиотечным фондам, формируемым по полному перечню дисциплин (модулей) основной образовательной программы. В БИТИ действует компьютерные классы, в которых проводятся занятия по различным дисциплинам специальности «АЭС», в том числе и классы обеспечены доступом к сети Интернет для самостоятельной подготовки студентов. На кафедре имеется компьютеры с возможностью работы в специальных программах и доступа к современным профессиональным базам данных, информационным справочным и поисковым системам, к таким как база данных периодических изданий.

В соответствии с требованиями образовательного стандарта ОС НИЯУ «МИФИ» по специальности 14.05.02 «Атомные станции: проектирование, эксплуатация и инжиниринг» реализация компетентностного подхода в процессе изучения дисциплины предполагает организацию интерактивных занятий. Интерактивные занятия проводятся в виде лабораторных занятий, во время которых обучающиеся в непосредственном контакте с преподавателем осваивают практические навыки проведения экспериментальных исследований.

Для аттестации обучающихся имеются фонды оценочных средств по дисциплине в соответствии с утвержденным рабочим учебным планом, включающий средства поэтапного контроля формирования компетенций (текущий контроль успеваемости и промежуточная аттестация).

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

№ п/п	Наименование контролируемых раз- делов (темы)	Код и наименование индикатора дости- жения компетенций	Наименование оценочного средства				
Входной контроль							
1	Входной контроль		Вопросы входного контроля (устно)				
Аттестация разделов, текущий контроль успеваемости							
2	Физические свойства различных сред.	ОПК-1; ПК-2; УКЕ-1	Вопросы текущего контроля (устно)				
3	Виды теплообмена и теплообменное оборудование.	ОПК-1; ПК-2; УКЕ-1	Вопросы текущего контроля (устно)				
Промежуточная аттестация							
4	экзамен	ОПК-1; ПК-2; УКЕ-1	Вопросы к экзамену (устно)				

Оценочные средства для входного контроля, текущего контроля и промежуточной аттестации (аннотация)

Входной контроль предназначен для выявления пробелов в знаниях студентов и готовности их к получению новых знаний. Оценочные средства для входного контроля представляют собой вопросы, которые задаются студентам в устной форме.

Вопросы входного контроля

- 1. Назначение и область применения источников и систем теплоснабжения.
- 2. Комбинированная выработка тепловой и электрической энергии, промышленное теплопотребление.
- 3. Классификация тепловых нагрузок.
- 4. Сезонные и круглогодичные нагрузки.
- 5. Технологическое потребление пара и горячей воды.
- 6. Теплоносители, их параметры.
- 7. Графики теплопотребления.
- 8. Определение расчетного количества теплоты на отопление здания.
- 9. Режимы теплопотребления.
- 10. Энергоэффективность использования тепло энергетических ресурсов.

В качестве оценочного средства текущего контроля и аттестации разделов используются устный опрос на лекциях и выполнение практических заданий

Вопросы текущего контроля

- 1. Течение жидкостей и газов
- 2. Разность напоров и потери напора
- 3. Напорная и пьезометрическая линии
- 4. Связь давления и скорости в потоке
- 5. Расчёт напорных потоков
- 6. Гидравлика отверстий и насадков
- 7. Физические свойства газов
- 8. Статическое давление
- 9. Эпюры давления
- 10. Приведённое статическое давление
- 11. Уравнение неразрывности потока
- 12. Разность давлений и потери давления
- 13. Теплоносители на основе воды
- 14. Особенности применения жидкометаллических теплоносителей
- 15. Примеры и параметры жидкометаллических теплоносителей

Для промежуточной аттестации предусмотрены вопросы к экзамену.

Вопросы по дисциплине вопросы к экзамену

- 1. Физические свойства жидкости.
- 2. Гидростатика. Гидростатическое давление
- 3. Основное уравнение гидростатики
- 4. Эпюры давления жидкости
- 5. Законы Архимеда и Паскаля
- 6. Гидродинамика жидкости.
- 7. Уравнение неразрывности потока
- 8. Разность напоров и потери напора
- 9. Связь давления и скорости в потоке. Расчет.
- 10. Гидравлический удар. Гидравлика отверстий и насадков.
- 11. Физические свойства газов
- 12. Статическое давление. Эпюры давления
- 13. Приведённое полное давление
- 14. Уравнение Бернулли для газа
- 15. Режимы движения газа
- 16. Теплоносители атомных энергетических установок
- 17. Особенности применения жидкометаллических теплоносителей
- 18. Примеры и параметры жидкометаллических теплоносителей
- 19. Основные понятия и определения теории теплообмена.
- 20. Температурное поле. Температурный градиент
- 21. Тепловой поток. Закон Фурье
- 22. Коэффициент теплопроводности.
- 23. Дифференциальные уравнения теплопроводности
- 24. Условия однозначности для процессов теплопроводности
- 25. Теплопроводность через плоскую и цилиндрическую стенки.
- 26. Конвективный теплообмен. Теория размерностей.
- 27. Теория подобия.
- 28. Критериальные уравнения.
- 29. Расчетные зависимости конвективного теплообмена.
- 30. Теплоотдача при вынужденном движении жидкости в трубах и каналах
- 31. Теплоотдача при поперечном обтекании труб.
- 32. Теплопередача через плоскую стенку
- 33. Теплопередача через цилиндрическую стенку.
- 34. Типы теплообменных аппаратов.
- 35. Расчет теплообменных аппаратов
- 36. Классификация теплообменников: по способу передачи теплоты, по вариантам движения теплоносителей.
- 37. Классификация конструкций теплообменников.
- 38. Принцип работы теплообменного оборудования в схемах атомных станций.
- 39. Конструкционные материалы, применяемы для изготовления теплообменной аппаратуры. Требования.
- 40. Подогреватели высокого давления
- 41. Конструктивные решения испарителей

Шкалы оценки образовательных достижений

Сумма	Оценка	Пятибальная	Характеристика знаний студентов	
баллов	(ECTS)	система		
90 – 100	A	отлично	"Отлично" - теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному.	

85 – 89	В		"Очень хорошо" - теоретическое содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом в основном сформированы, все предусмотренные программой обучения учебные задания выполнены, качество выполнения большинства из них оценено числом баллов, близким к максимальному.	
75 – 84	C	хорошо	"Хорошо" - теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками.	
65 – 74	D		"Удовлетворительно" - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки.	
60 - 64 E удовлетвори- тельно прог		1	"Посредственно" - теоретическое содержание курса освоено частично, некоторые практические навыки работы не сформированы, многие предусмотренные программой обучения учебные задания не выполнены, либо качество выполнения некоторых из них оценено числом баллов, близким к минимальному.	
Ниже 60	F	не удовлетво- рительно	"Неудовлетворительно" - очень слабые знания, недо- статочные для понимания курса, имеется большое ко- личество основных ошибок и недочетов.	

Таблица для анализа соответствия и взаимного пересчета оценок в различных шкалах

таолица для анализа соответствия и взаимного пересчета оценок в различных шкалах						
Сумма баллов	Оценка по 4-х бальной шкале	Зачет	Оценка (ECTS)	Градация		
90 – 100	5 (отлично)		A	отлично		
85 – 89	4 (хорошо)	зачтено	В	очень хорошо		
75 – 84			С	хорошо		
70 - 74			D			
65 – 69	2 (************************************		D	удовлетворительно		
60 - 64	3 (удовлетворительно)		Е	посредственно		
Ниже 60	2 (неудовлетворительно)	не зачтено	F	неудовлетворительно		

Учебно-методическое и информационное обеспечение учебной дисциплины

Основная литература:

- 1. Сахин, В. В. Теплообмен в однородной среде (теплопередача) : учебное пособие / В. В. Сахин. Санкт-Петербург : БГТУ "Военмех" им. Д.Ф. Устинова, 2017. 121 с. https://e.lanbook.com/reader/book/121813/#2
- 2. Цирельман, Н. М. Теория и прикладные задачи тепломассопереноса : учебное пособие / Н. М. Цирельман. 2-е изд., испр. Санкт-Петербург : Лань, 2019. 504 с. <u>https://e.lanbook.com/reader/book/119624/#8</u>

Дополнительная литература

3. Золотоносов, Я. Д. Трубчатые теплообменники. Моделирование, расчет : монография / Я. Д. Золотоносов, А. Г. Багоутдинова, А. Я. Золотоносов. — Санкт-Петербург : Лань, 2018. — 272 с. https://e.lanbook.com/reader/book/112678/#2

- 4. Митрофанова, О. В. Гидродинамика и теплообмен закрученных потоков в каналах ядерно-энергетических установок : монография / О. В. Митрофанова. Москва : ФИЗМАТЛИТ, 2010. 285 с. https://e.lanbook.com/reader/book/48282/#82
- 5. Цирельман, Н. М. Конвективный тепломассоперенос: моделирование, идентификация, интенсификация : монография / Н. М. Цирельман. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2018. 472 с. https://e.lanbook.com/reader/book/106879/#2
- 6. Средства измерения температур. (методические указания) Разуваев А.В. БИТИ, Балаково, 2016, 24 с
 - 7. Подогреватели АЭС. (методические указания) Разуваев А.В. БИТИ, Балаково, 2016, 26 с
- 8. Типы теплообменников. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 24
- 9. Парогенераторы АЭС. Часть 1. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 20 с
- 10. Парогенераторы АЭС. Часть 2. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 24 с
- 11. Расчета котла-утилизатора. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 17 с.
- 12. Исследование теплоотдачи при пузырьковом кипении жидкости. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 8 с.
- 13. Определение коэффициента теплоотдачи при свободной конвекци воздуха около горизонтальной трубы. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 13 с.
- 14. Исследование теплопроводности твердых тел методом плоского бикалориметра. (методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 9 с.
- 15. Исследование теплопередачи в теплообменнике типа "труба в трубе".(методические указания) Разуваев А.В. БИТИ, Балаково, 2017, 11 с.

Материально-техническое обеспечение учебной дисциплины

Для проведения лекционных и практических занятий используется учебная аудитория, предназначенная для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Аудитория оснащена мультимедийным комплексом, в составе которого - компьютер с колонками, проектор и экран для проведения занятий с помощью презентаций. Лабораторные занятия могут проводиться в лаборатории «Виртуальные комплексы».

Учебно-методические рекомендации для студентов

1. Указания для прослушивания лекций

Перед началом занятий внимательно ознакомиться с учебным планом проведения лекций и списком рекомендованной литературы.

Перед посещением очередной лекции освежить в памяти основные концепции пройденного ранее материала. Подготовить при необходимости вопросы преподавателю. Не надо опасаться, что вопросы могут быть простыми.

На лекции основное внимание следует уделять не формулам и математическим выкладкам, а содержанию изучаемых вопросов, определениям и постановкам задач.

В процессе изучения лекционного курса необходимо по возможности часто возвращаться к основным понятиям и методам решения задач (здесь возможен выборочный контроль знаний студентов).

Желательно использовать конспекты лекций, в которых используется принятая преподавателем система обозначений.

Для более подробного изучения курса следует работать с рекомендованными литературными источниками и вновь появляющимися источниками.

2. Указания для участия в практических занятиях

Перед посещением уяснить тему практического занятия и самостоятельно изучить теоретические вопросы.

В конце занятия при необходимости выяснить у преподавателя неясные вопросы.

Основные результаты выполнения работы необходимо распечатать.

3. Указания для выполнения лабораторных работ

Соблюдать требования техники безопасности, для чего прослушать необходимые разъяснения о правильности поведения в лаборатории.

Перед выполнением лабораторной работы провести самостоятельно подготовку к работе изучив основные теоретические положения, знание которых необходимо для осмысленного выполнения работы.

В процессе выполнения работы следует постоянно общаться с преподавателем, не допуская по возможности неправильных действий.

Основные результаты экспериментов необходимо зафиксировать в письменном виде.

При сдаче зачета по работе подготовить отчет о проделанной работе, где должны быть отражены основные результаты и выводы.

- 4. Самостоятельная работа студентов обычно складывается из нескольких составляющих:
- работа с текстами: учебниками, историческими первоисточниками, дополнительной литературой, в том числе материалами интернета, а также проработка конспектов лекций;
 - написание докладов, рефератов;
 - подготовка к практическим занятиям;
 - подготовка к зачету непосредственно перед ним.

Таким образом, самостоятельная работа студентов является необходимым компонентом получения полноценного высшего образования.

Методические рекомендации для преподавателей

1. Указания для проведения лекций

На первой вводной лекции сделать общий обзор содержания курса и отметить новые методы и подходы к решению задач, рассматриваемых в курсе, довести до студентов требования кафедры, ответить на вопросы.

При подготовке к лекционным занятиям необходимо продумать план его проведения, содержание вступительной, основной и заключительной части лекции, ознакомиться с новинками учебной и методической литературы, публикациями периодической печати по теме лекционного занятия. Уточнить план проведения практического занятия по теме лекции. Перед изложением текущего лекционного материала напомнить об основных итогах, достигнутых на предыдущих лекциях. С этой целью задать несколько вопросов аудитории и осуществить выборочный контроль знания студентов.

В ходе лекционного занятия преподаватель должен назвать тему, учебные вопросы, ознакомить студентов с перечнем основной и дополнительной литературы по теме занятия. Раскрывая содержание учебных вопросов, акцентировать внимание студентов на основных категориях, явлениях и процессах, особенностях их протекания. Раскрывать сущность и содержание различных точек зрения и научных подходов к объяснению тех или иных явлений и процессов.

Следует аргументировано обосновать собственную позицию по спорным теоретическим вопросам. Приводить примеры. Задавать по ходу изложения лекционного материала риторические вопросы и самому давать на них ответ. Это способствует активизации мыслительной деятельности студентов, повышению их внимания и интереса к материалу лекции, ее содержанию. Преподаватель должен руководить работой студентов по конспектированию лекционного материала, подчеркивать необходимость отражения в конспектах основных положений изучаемой темы, особо выделяя, категориальный аппарат. В заключительной части лекции необходимо сформулировать общие выводы по теме, раскрывающие содержание всех вопросов, поставленных в лекции. Объявить план очередного практического занятия, дать краткие рекомендации по подготовке студентов к занятию. Определить место и время консультации студентам, пожелавшим выступить на занятии с докладами и рефератами.

На последней лекции уделить время для обзора наиболее важных положений, рассмотренных в курсе.

2. Указания для проведения практических занятий

Четко обозначить тему занятия.

Обсудить основные понятия, связанные с темой занятия.

В процессе решения задач вести дискуссию со студентами о правильности применения теоретических знаний.

Отмечать студентов, наиболее активно участвующих в решении задач и дискуссиях.

В конце занятия задать аудитории несколько контрольных вопросов.

3. Указания для проведения лабораторных занятий.

Соблюдать требования техники безопасности и проводить необходимые разъяснения о правильности поведения в лаборатории.

Перед выполнением лабораторной работы проверить степень готовности студентов, напомнить и обсудить основные теоретические положения, знание которых необходимо для осмысленного выполнения работ.

В процессе выполнения работы следует постоянно общаться со студентами, не допуская по возможности их неправильных действий.

Требовать, чтобы основные результаты экспериментов были зафиксированы студентами в письменном виде.

При приеме зачета по работе требовать отчет о проделанной работе, где должны быть отражены основные результаты и выводы.

4. Указания по контролю самостоятельной работы студентов

По усмотрению преподавателя задание на самостоятельную работу может быть индивидуальным или фронтальным.

При использовании индивидуальных заданий требовать от студента письменный отчет о проделанной работе.

При применении фронтальных заданий вести коллективные обсуждения со студентами основных теоретических положений.

С целью контроля качества выполнения самостоятельной работы требовать индивидуальные отчеты (допустимо вместо письменного отчета применять индивидуальные контрольные вопросы).

Программа составлена в соответствии с требованиями ОС НИЯУ МИФИ и учебным планом основной образовательной программы по специальности 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

Рабочую программу составил профессор Земсков В.М..

Рецензент: доцент Ефремова Т.А.

Программа одобрена на заседании УМКС 14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг.

Председатель учебно-методической комиссии Ефремова Т.А.